杜克MQM畢業(yè),成功上岸美國analytics崗,分享我的BA/DA求職經(jīng)驗(yàn)
關(guān)注已取消
關(guān)注成功
已添加至{{ selectCollectNames.join(',') }}
更改
{{ !collectStatus ? '+' : '' }} {{!collectStatus ? '關(guān)注' : '已關(guān)注'}}
在線咨詢
杜克MQM畢業(yè),成功上岸美國analytics崗,分享我的BA/DA求職經(jīng)驗(yàn)
收藏已取消
收藏成功
已添加至{{ selectCollectNames.join(',') }}
更改
{{!collectStatus ? '收藏' : '已收藏'}}
指南者留學(xué) 胡圖圖 2022年05月26日 閱讀量:2564
<p style="text-align: justify;">Hello,我是Bella,去年畢業(yè)于杜克大學(xué)MQM項(xiàng)目,成功在美國上岸Analytics崗。今天借這個(gè)機(jī)會和大家分享一下我之前找工作的經(jīng)驗(yàn),希望多少可以給大家做個(gè)參考,也幫助自己回顧一下我的2021。</p> <p style="text-align: justify;">&nbsp;</p> <p style="text-align: justify;">首先,我想說的是請堅(jiān)定你的方向和決心,無論是要回國還是留美。</p> <p style="text-align: justify;">&nbsp;</p> <p style="text-align: justify;">如果要回國就全心全意地找國內(nèi)工作,如果要待美國就心無旁騖。對于大多數(shù)人來講,在美國像我這樣沒有背景、沒有人脈想找到工作,就要靠自己努力。你需要把有限的時(shí)間精力用在投簡歷、準(zhǔn)備面試、social和喝雞湯上面,不要總是心猿意馬。我自詡是一個(gè)很水、不聰明又沒有自制力的人,但好在可能還算會抓重點(diǎn)(應(yīng)付筆試面試),所以既然我都找到了工作,相信大家都可以的。</p> <p style="text-align: justify;">&nbsp;</p> <p style="text-align: justify;">在MS階段,我選擇了去Duke讀MQM,主要有兩方面的原因。一方面,這是與我想從事工作的對口專業(yè),在工具層面MQM基本涵蓋了最核心的三種工具:SQL,R/Python以及Tableau。如果要找一份BA工作的話,MQM可以說是足夠的。</p> <p style="text-align: justify;">&nbsp;</p> <p style="text-align: justify;">另一方面,它還提供了相當(dāng)多的Soft skill course,這類課程大多旨在培養(yǎng)Soft Skills,如communication和team working,應(yīng)該說這也是MQM畢業(yè)生與其他BA畢業(yè)生相比的一個(gè)相對優(yōu)勢。</p> <p style="text-align: justify;">&nbsp;</p> <p style="text-align: justify;">MQM的大部分工作都是小組作業(yè),這其實(shí)模擬了比較真實(shí)工作的狀態(tài):不同人會有各自的特點(diǎn),會有人摸魚,會有分歧也會有矛盾。對于我來說,這種Team-based learning最大的好處是可以keep speaking English,同時(shí)也為behavior question提供了一定的素材。MQM還投入了大量的課程來有意識地培養(yǎng)Communication Skill, 比如兩門Business Communication, 包括一門Negotiation和一門Critical Thinking,會著重培養(yǎng)Presentation Skills,不管是簡單的Elevator Speech還是復(fù)雜的Team Presentation。</p> <p style="text-align: justify;">&nbsp;</p> <p style="text-align: justify;">在美國找工作除了要認(rèn)真學(xué)好學(xué)校授課的內(nèi)容,還要努力投簡歷,我所有的面試都是通過海投得來的。起初,我會在LinkedIn上各種networking,拿到的內(nèi)推有十幾個(gè),但是最終一個(gè)面試都沒有&hellip;&hellip;找工作的那個(gè)學(xué)期只有兩門課,我基本每天從上午9點(diǎn)投到下午4點(diǎn),晚上才寫作業(yè)focus學(xué)校的課程,一周能投七八十個(gè),整個(gè)找工季差不多都是這個(gè)節(jié)奏。</p> <p style="text-align: justify;">&nbsp;</p> <p style="text-align: justify;">在拿到面試之后要好好準(zhǔn)備,可以在網(wǎng)上搜索面經(jīng),通過面經(jīng)高效率準(zhǔn)備,一定要認(rèn)真準(zhǔn)備每一個(gè)面試,因?yàn)槊娴亩嗔四銜l(fā)現(xiàn)大同小異,我面到后面基本上電面不準(zhǔn)備都會過。</p> <p style="text-align: justify;">&nbsp;</p> <p style="text-align: justify;">我準(zhǔn)備的方向主要是analytics track,準(zhǔn)備的方面也是依據(jù)這個(gè)track的要求進(jìn)行的,分為以下幾個(gè)方面:data challenge、behavior question、統(tǒng)計(jì)知識、project。</p> <p style="text-align: justify;">&nbsp;</p> <p style="text-align: justify;"><strong>以下是我總結(jié)的一些面試tips。</strong></p> <p style="text-align: justify;">&nbsp;</p> <p style="text-align: justify;"><strong>01 Data Challenge</strong></p> <p style="text-align: justify;">&nbsp;</p> <p style="text-align: justify;">前期準(zhǔn)備可以通過看別人的經(jīng)驗(yàn)貼,翻以前ML project相關(guān)作業(yè)的report,和朋友請教經(jīng)驗(yàn)等等方式,了解這個(gè)東西大體應(yīng)該怎么搞。</p> <p style="text-align: justify;">&nbsp;</p> <p style="text-align: justify;">常用的code可以提前準(zhǔn)備好,例如LaTeX用于寫報(bào)告的模板,寫報(bào)告常用的語句,EDA 相關(guān)的code,常用模型的code。Cheat sheet要時(shí)常更新自己的版本,放在手邊待用,想好modeling的大體思路,先檢查data,需要畫什么圖,選定evaluation metric,train一到兩個(gè)model,檢查結(jié)果并寫結(jié)論。</p> <p style="text-align: justify;">&nbsp;</p> <p style="text-align: justify;">在真正做的時(shí)候要注意知道如何解釋你的選擇,比如為什么數(shù)據(jù)這么清理,為什么feature這么搞,為什么用model A,而不是model B,為什么用這個(gè)metric,為什么做這個(gè)假設(shè)。不是特別常見的model可以簡單解釋下原理,畢竟看report的人也不可能什么都懂。</p> <p style="text-align: justify;">&nbsp;</p> <p style="text-align: justify;">如果直接調(diào)別人一個(gè)現(xiàn)成的包,用了不太常見的一個(gè)model,reference要按規(guī)矩寫好。我的習(xí)慣是會加一個(gè)future work,說一下如果時(shí)間充足,你還打算做什么,以表示對這個(gè)data challenge的問題考慮充分了。最后Summary/Conclusion是一定要寫的,即通過你的模型,你發(fā)現(xiàn)了什么。最好能給出 actionable insights,因?yàn)楣境鰀ata challenge是想考察你解決問題的能力,而不是調(diào)包的能力。</p> <p style="text-align: justify;">&nbsp;</p> <p style="text-align: justify;"><strong>02 Behavior Question</strong></p> <p style="text-align: justify;">&nbsp;</p> <p style="text-align: justify;">這個(gè)部分是一個(gè)容易被忽視的部分,因?yàn)槿绻氵B自己都聊不清楚,其實(shí)會讓面試官,尤其是hiring manager對敢不敢用你挺猶豫的。我在這方面絕大多數(shù)的時(shí)候表現(xiàn)的還不錯(cuò),方法就是找?guī)讉€(gè)大的topic,每個(gè)topic下面準(zhǔn)備好故事,把故事寫出來,不斷地思考細(xì)節(jié),思考怎么少說廢話,怎么條理清楚的講出來。</p> <p style="text-align: justify;">&nbsp;</p> <p style="text-align: justify;">我準(zhǔn)備的大topic有以下幾個(gè):</p> <p style="text-align: justify;">&nbsp;</p> <p style="text-align: justify;">(1) Leadership and how to influence others</p> <p style="text-align: justify;">(2) A hard challenge faced and How to solve it</p> <p style="text-align: justify;">(3) A true failure and how to turn it around</p> <p style="text-align: justify;">(4) A proud success made with team together.</p> <p style="text-align: justify;">&nbsp;</p> <p style="text-align: justify;">這里重中之重的關(guān)鍵是少說廢話,有一個(gè)behavior很好的模板叫S(Situation)T(Task)A(Action)R(Result),可以用來frame幾乎所有的behavioral和culture fit的素材。在準(zhǔn)備的時(shí)候一定要強(qiáng)調(diào)你做了什么,如果你能夠量化結(jié)果的話那就更棒了。</p> <p style="text-align: justify;">&nbsp;</p> <p style="text-align: justify;"><strong>03 統(tǒng)計(jì)</strong></p> <p style="text-align: justify;">&nbsp;</p> <p style="text-align: justify;">強(qiáng)推introduction of statistical learning這本書。因?yàn)樽约翰?,高端書都看不下去。我感覺對于大部人來說,能讓別人理解你在做什么就足夠了。它沒有ESL里天書般的理論,我看了3遍。第一遍是學(xué)校里上課看的,第二遍自己看的,最重要的第三遍邊看邊總結(jié)。個(gè)人覺得英語非母語的我們,面試中其實(shí)真的挺難把一個(gè)技術(shù)問題講清楚。這個(gè)書的優(yōu)勢就體現(xiàn)出來了,它用通俗易懂的語言講清楚了每個(gè)算法,很多段落是直接可以拿來回答面試問題的。</p> <p style="text-align: justify;">&nbsp;</p> <p style="text-align: justify;">其次,對于每個(gè)算法要了解它的背景,object function參數(shù)對結(jié)果有什么影響,應(yīng)用條件和優(yōu)缺點(diǎn)。我的做法是開一個(gè)doc,看書的時(shí)候思考這些段落想說明什么問題,如果是面試考察這個(gè)內(nèi)容會怎么問,然后記錄下這個(gè)問題,并根據(jù)書上那幾段內(nèi)容總結(jié)成回答。</p> <p style="text-align: justify;">&nbsp;</p> <p style="text-align: justify;">如果想讓自己的答案更豐滿,可以Google這個(gè)問題看看別人是怎么說的。這一步很重要,一定要形成自己表述。網(wǎng)上有太多ML相關(guān)的資源可以幫助查漏補(bǔ)缺。我比較暴力直接,找?guī)讉€(gè)DS interview questions lists一個(gè)個(gè)的過,總結(jié)出自己的答案。很多問題回答起來可能比較簡單,但自己可以多深入一些,比如經(jīng)典的type1,type2問題,就可以順帶把confusion matrix,AUC一道總結(jié)下。</p> <p style="text-align: justify;">&nbsp;</p> <p style="text-align: justify;">Datacamp也是一個(gè)很重要的資源,里面有一些關(guān)于統(tǒng)計(jì)分布,experimentation方面的課程,我是從那些課程里第一次系統(tǒng)地學(xué)習(xí)并練習(xí)了泊松分布,指數(shù)部分,permutation和bootstrap的。</p> <p style="text-align: justify;">&nbsp;</p> <p style="text-align: justify;">Analytics track找工方向里A/B testing也是考察的重點(diǎn),我是在Udacity上了基礎(chǔ)課,同樣要注意總結(jié)可能的問題和自己的答案,define metrics,sample size,power,p-value之類的。Udacity上的AB testing的課是入門的利器,第一次上那門課的時(shí)候仿佛打開了一扇新世界的大門。但是其實(shí)那門課很多細(xì)節(jié)是沒有講清楚的(至少我自己沒聽明白),比如沒有涉及t test,沒有講清楚variability,bootstrap,A-A test的意義,怎么在實(shí)驗(yàn)設(shè)計(jì)階段應(yīng)對learning effect,network effect,和其他一些corner case。所以我覺得這門課入門很好,但是還要多從其他渠道學(xué)習(xí)相關(guān)知識。</p> <p style="text-align: justify;">&nbsp;</p> <p style="text-align: justify;"><strong>04 Project</strong></p> <p style="text-align: justify;">&nbsp;</p> <p style="text-align: justify;">個(gè)人覺得這里很重要的是得有一個(gè)框架,讓人能很清楚的了解你的邏輯。對于resume上的project,需要理清:</p> <p style="text-align: justify;">&nbsp;</p> <p style="text-align: justify;">1)這是一個(gè)什么樣的問題</p> <p style="text-align: justify;">2)為解決這個(gè)問題,模型的目標(biāo)是什么</p> <p style="text-align: justify;">3)數(shù)據(jù)長什么樣,有什么特點(diǎn)</p> <p style="text-align: justify;">4)考慮什么模型</p> <p style="text-align: justify;">5)結(jié)果如何</p> <p style="text-align: justify;">6)有什么實(shí)際意義。</p> <p style="text-align: justify;">&nbsp;</p> <p style="text-align: justify;">然后在這個(gè)框架下細(xì)分每一步,發(fā)現(xiàn)了什么,會導(dǎo)致什么問題,怎么解決。比如EDA時(shí),發(fā)現(xiàn)數(shù)據(jù)imbalanced,說明imbalanced會怎么樣,考慮oversampling或其他解決措施,總之要讓人知道你做每一步都是有原因的。像做presentation一樣盡可能詳細(xì)的把這些說明介紹寫下來,之后就可以根據(jù)面試的長短有選擇性的介紹,也可以用作onsite時(shí)的presentation。</p> <p style="text-align: justify;">&nbsp;</p> <p style="text-align: justify;">差不多就是這些了,一身缺點(diǎn)沒有背景的普通人和她很普通的經(jīng)歷希望可以鼓舞啟發(fā)到屏幕前不普通的你。只要心還透明就能折射希望,希望疫情早日退散,祝福所有人2022順利!</p> <p style="text-align: justify;">&nbsp;</p> <p><img style="display: block; margin-left: auto; margin-right: auto;" src="https://info.compassedu.hk/sucai/content/1653560490262/1653560490262.png" width="750" height="340" /></p>
猜你喜歡
預(yù)約咨詢
預(yù)約咨詢
微信咨詢
掃一掃立即咨詢
App下載
下載指南者留學(xué)App
在線客服
電話咨詢
400-183-1832
回到頂部
預(yù)約咨詢
現(xiàn)在來設(shè)置你的賬號吧
只需要花不到一分鐘,之后便可以獲得更精準(zhǔn)的推薦~
1
留學(xué)意向
2
基本意向
3
詳細(xì)背景
4
了解途徑
1.1 您期望申請學(xué)歷是
1.2 您期待的留學(xué)地區(qū)是多選
2.1 您的身份狀態(tài)是
2.2 您的目前學(xué)歷是
3.1 您的本科學(xué)校是
大陸本科
海外本科
3.2 您的學(xué)校名稱是
沒有查詢到相關(guān)的學(xué)校
查詢中...
3.3 您的專業(yè)名稱是
沒有查詢到相關(guān)的專業(yè)
查詢中...
4. 您從哪里了解到指南者留學(xué)網(wǎng)站的
* 0/20
取消
您的會員等級不足,查看等級詳情
立即前往
選擇收藏夾
新增收藏夾
{{option.remark_name}}
默認(rèn)
{{option.info_count}}條內(nèi)容
取消
完成
新增收藏夾
設(shè)為默認(rèn)收藏夾
返回
{{ form.id ? '完成編輯' : '確定創(chuàng)建' }}
是否放棄編輯內(nèi)容?
取消
確定